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Low-Temperature Formation of Cu+ in Evaporated Cu-Cr Oxide 
Films: Application to Methanol Synthesis 

There is increasing evidence that higher 
oxidation states of transition and noble 
metals are important for the activation of 
CO and CO* toward oxygenate formation. 
One example is the role of copper in cop- 
per-containing zinc oxide and chromium 
oxide catalysts for the selective low-pres- 
sure synthesis of methanol. The nature of 
active Cu sites in this reaction has been a 
subject of considerable interest (1). Recent 
studies of Cu-ZnO catalysts by Klier and 
co-workers (2-4) and Okamoto et al. (5, 6) 

provide evidence for Cu+ stabilization; 
however, evidence to the contrary also ex- 
ists, e.g., Fleisch and Mieville (7) and 
Friedrich ef al. (8). Studies of Cu-Cr oxide 
catalysts (9, 10) show additional evidence 
that Cu+ is a necessary component for 
methanol synthesis. A better understanding 
of the mechanisms responsible for the stabi- 
lization of Cu+ ions will help elucidate the 
nature of the active site in these catalysts. 

We report data showing that vacuum 
heating of Cu/CrZOx evaporated films pro- 
duces surface-stabilized Cu+ ions, the con- 
centration of which can be varied with 
treatment temperature. Catalytic evalua- 
tion of an analogous powdered Cu-Cr ox- 
ide methanol catalyst that had a similar vac- 
uum heat treatment also showed enhanced 
activity for methanol synthesis compared 
to a catalyst without this treatment 

Model catalyst samples were prepared by 
sequential electron-beam evaporation of 
copper and hot-pressed pellets of Cr203. 
The oil-free evaporation chamber was 
evacuated by a cryopump and an ion pump. 
The base pressure was in the low 10e7 Torr 
range but rose as high as 2 x lop6 Torr 
during depositions. Composite catalyst 

films consisted of four layers of (10 A Cr203 
+ 6.2 A Cu) covered by a top layer of 10 A 
CrzOj to form a sandwich configuration. 
Film thicknesses of Cr203 and Cu were de- 
termined from bulk densities so as to pro- 
duce equal atomic percentages of Cu and 
Cr. The actual C&r ratio as determined by 
neutron activation was 1.12. All samples 
were subsequently calcined in air at 350°C 
for -4 h to completely oxidize the copper 
component. Films for surface analysis were 
evaporated onto aluminum foil. Identical 
structures were also prepared on self-sup- 
porting SiOz film 100 A thick. These prepa- 
rations could be treated and analyzed by 
TEM and electron diffraction (II). 

Vacuum heating, hydrogen reductions, 
and surface analyses were done in a com- 
bined reactor/UHV analysis chamber de- 
scribed previously (9). Vacuum heating 
was carried out at -2 x 10e6 Torr, and re- 
ducing conditions were 1 atm flowing hy- 
drogen for -1 h. The X-ray photoemission 
(XPS) experiments utilized a MgKol X-ray 
source. Because the catalyst was a thin 
film, sample charging did not occur and a 
flood gun was not required. Binding ener- 
gies of the photoemission and Auger peaks 
have been referenced to the copper metal 
(Cu 2p& peak at a binding energy of 932.4 
eV. Catalyst activity was evaluated as pre- 
viously described (10). 

The as-prepared samples contained cop- 
per in several oxidation states whose con- 
centrations varied with aging in air at ambi- 
ent temperature (Fig. 1). Calcination in air 
at 350°C stabilized the Cu2+ oxidation state 
so that subsequent experiments could be 
referenced to a common set of initial condi- 
tions. Reduction (HZ, 270°C) of the calcined 
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FIG. 1. Cu 2pwz spectra for 1: 1 Cu-CrzOs evapo- 
rated films: (a) aged in air at ambient temperature for 2 
weeks; (b) aged in air at ambient temperature for sev- 
eral months; (c) calcination in air at 350°C for 4 h to 
fully stabilize the Cu*+ oxidation state. Auger spectra 
(not shown) verified that the peak labeled Cu+ did not 
contain Cue species. 

samples fully reduced the Cu component 
(9). This was verified by the XPS spectra of 
the Cu 2p core levels and the Cu L3M4,5 M4,5 
X-ray-induced Auger levels, which were 
identical to those of Cu metal. Figure 2a 
shows the Cu LMM spectrum for this re- 
duced sample. The weak intensity features 
at lower kinetic energy to the main Cue Au- 
ger peak are also attributable to CuO. 

The thin-film catalysts that were merely 
calcined produced no Cu+ that was stable 
to H2 reduction. This is in contrast to the 
catalysts made by the decomposition of ho- 
mogeneous citrate complexes (see Fig. 1 of 
Ref. (9~)). If the calcined thin oxide film 
was heated under vacuum, a significant 
fraction of the Cu+ became stable to reduc- 
tion (see Fig. 2b). The additional feature at 
-916.6 eV kinetic energy is attributable to 
Cu+ ions, as identified from studies of CuzO 
and other Cu+ compounds (12, 13). Obser- 
vation of only one Cu 2p3,* peak further 
supports this assignment. 

Calcined Cu-Cr oxide films containing 
only Cu*+ reduced totally to Cu+ upon vac- 
uum heating. The XPS spectra of the Cu 2p 

Kinetic energy (eV) 

FIG. 2. Comparison of the Cu L3M4,5M4.5 X-ray-in- 
duced Auger spectra for 1: 1 Cu-Cr,Ox evaporated 
films that had different pretreatments before the hy- 
drogen reduction: (a) calcination in air at 350°C fol- 
lowed by Hz--l atm at 270°C; (b) calcination in air at 
350°C plus heating under vacuum at 425°C followed by 
Hz--l atm at 270°C. 
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FIG. 3. Cu L,M4,5Ms,5 X-ray-induced Auger spectra 
for hydrogen-reduced 1: 1 Cu-CrzO, evaporated films 
that had been heated under vacuum at various temper- 
atures: (a) 375°C; (b) 425°C; and (c) 475°C. The preced- 
ing calcination conditions and subsequent reduction 
conditions were kept constant as in Fig. 2. A linear 
background has been removed. 
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core levels for vacuum-treated films show 
no shake-up satellites indicative of Cu2+. 
The Cu LMM Auger spectrum (not shown) 
shows that the surface region is predomi- 
nantly Cu+. The peak maximum occurs at 
-916.6 eV, also indicative of Cu+ ions. 

Previous results have demonstrated that 
although CuO is rapidly transformed to 
Cu20 under vacuum at 250°C (14, 151, the 
resulting Cu+ is easily reduced (HZ at 
270°C). In contrast, the vacuum-heated 
Cu-Cr oxide films produce a Cu+ species 
that is stable to hydrogen reduction. Figure 
3 shows a sequence of Auger spectra from 
the X-ray-induced Cu LMM transition for 
vacuum heating at several temperatures fol- 
lowed by identical H2 reduction treatments. 
The spectra show a growth in Cut signal 

intensity on the low kinetic energy side of 
the Cue Auger peak. Vacuum treatment 
temperatures r375”C appear necessary for 
the formation of the Cu+ species stable to 
H2 reduction. However, vacuum heating 
above 500°C produced larger quantities of 
Cu+ with respect to Cue (not shown). 

Figure 4 illustrates both electron diffrac- 
tion and TEM of a typical vacuum-heated 
film (supported on 100 A SiOz instead of Al 
foil). The typical crystallite size, as seen 
in the micrograph, is -500 A. The diffrac- 
tion data compare the experimental d spac- 
ings for the vacuum-treated film (top) 
with a known X-ray diffraction pattern 
for CuCrOz (JCPDS No. 26-l 113), verifying 
the formation of the delafossite structure 
during vacuum treatment. 

FIG. 4. Top: TEM micrograph of Cu-Cr*O, thin film on 100 ,& SiOz (support not visible) after 
calcination and vacuum heating. Bottom: electron diffraction data for film pictured above. Experimen- 
tal data are shown above the axis; X-ray data for CuCrO? (JCPDS No. 26-l 113) are shown below the 
axis. Intensities and line widths are subjective. 
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In an attempt to relate specific activity 
for methanol formation with the Cu+ spe- 
cies formed by vacuum heating, we com- 
pared two powdered Cu-Cr oxide catalysts 
prepared by the decomposition of homoge- 
neous citrate complexes and calcined iden- 
tically as described previously (9). One 
sample was directly reduced at 270°C in 
flowing HZ at 1 atm for -2 h; the other was 
heated to 375°C under mechanical-pump 
vacuum (-4 X lo-* Tot-r) for -4 h and then 
reduced in HZ. Table 1 shows the effects of 
such a treatment upon the catalytic activity 
for methanol formation. The steady-state 
rates of methanol formation were made by 
using a single-pass flow reactor after the 
catalyst had been on stream for 4 h. The 
catalysts typically underwent - 10% deacti- 
vation during the first hour of reaction, be- 
fore reaching steady-state activity. In all 
cases, CO conversion levels were main- 
tained at ~5%. The specific activity for 
methanol formation increased -4 times for 
the sample with vacuum pretreatment. The 
surface area remained constant during 
these low-temperature treatments. Cu 
LMM Auger spectra (Fig. 5), and a single 
Cu 2p3,* peak, confirm the enhancement of 
Cu+ for the powdered Cu-Cr oxide catalyst 
with vacuum treatment. 

The above observations are consistent 
with the formation of the CuCr02 delafos- 
site phase during vacuum heating. Pub- 
lished results and our own experiments 
show that the simple copper oxides such as 
CuO and Cu20 are readily reduced by hy- 

TABLE 1 

Pretreatment Effects on Catalytic Activity of 
Powdered Cu-Cr Oxide 

Pretreatment CH,OH activity” Surface area 
conditions (~mole/(m*-set) Cm*) 

Hz, 27O”C, 1 atm, 2 h 
“ac, 375°C. 4 x 10-Z 

Torr, 4h HZ, 270°C, 1 atm, 2 h 

0.015 52.9 

0.056 49.9 

a Catalyst activities evaluated at 2: 1 HI/CO, 850 psig, 
270°C. 

Kinetic energy (eV) 

FIG. 5. Cu L3M4,5M4,5 X-ray-induced Auger spectra 
for powdered 1 : 1.3 Cu-Cr oxide catalysts formed 
from the decomposition of homogeneous citrate com- 
plexes via controlled calcination (see Ref. (9)) fol- 
lowed by: (a) Hr-1 atm, 270°C; (b) heating under vac- 
uum at 375°C followed by Hz-l atm, 270°C. A linear 
background has been removed. 

drogen at ~270°C (23, 16). XPS results 
have also shown that CuO is reduced to 
Cu20 by vacuum heating to 250°C (14, 15), 
and more recently a transition from Cu+ to 
Cu*+ was reported to occur at 400°C via 
charge transfer between bulk and surface 
layers (14). In either circumstance the sim- 
ple oxides formed are easily reduced in hy- 
drogen. Thus we can conclude that chro- 
mium is directly responsible for the stability 
of Cu+ in the evaporated Cu-Cr oxide 
system. 

Previous studies (9, 10) of Cu-Cr oxide 
powder catalysts formed by controlled de- 
composition of a homogeneous citrate com- 
plex or by heating to high temperatures in 
air to preferentially form CuCrO2 show a 
correlation between methanol activity and 
the Cu+ component of the delafossite com- 
pound CuCr02. In the former case, varia- 
tions in calcination temperature of the cit- 
rate precursors affected the stability of the 
copper oxidation state at the catalysts sur- 
face after H2 reduction, the optimum treat- 
ment producing at most 20% Cu+. For the 
latter case, high-temperature air calcina- 
tions (900-1000°C) are required to stabilize 
the delafossite phase (CuCr03, as opposed 
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to the spine1 phase (CuCr204) formed near 
600-700°C. The major complication is that 
the surface areas rapidly collapse at high 
temperature. However, mild vacuum heat- 
ing of Cu-Cr oxide systems appears to pro- 
vide a unique way to control the concentra- 
tion of Cu+ ions in a copper-containing 
methanol catalyst without the severe loss of 
surface area. It also allows surface studies 
of model evaporated Cu-Cr oxide films to 
be more directly applicable to studying the 
possible interaction between Cue and Cu+, 
both of which exist on the active catalyst 
surface. 

4. 

5. 

10. 

In summary, low-temperature vacuum 
heating of calcined Cu/CrZO~ evaporated 
layers ~375°C forms a surface Cu+ phase 
that is stable to reduction by hydrogen at 
270°C. Cuprous chromite is the compound 
responsible for the surface-stabilized Cu+ 
ions. The advantage of the vacuum-heating 
preparation is that it is possible to produce 
controlled concentrations of Cu+ sites that 
have a direct effect on methanol synthesis. 
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